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Abstract- - The study focuses on optimizing the performance 

of a three-phase voltage-source inverter using Model 

Predictive Control (MPC). The inverter's functioning is 

analyzed through Clarke Transformation, especially when the 

load parameters are not predefined. The research introduces 

an LC filter model, confirming its effectiveness in minimizing 

Total Harmonic Distortion (THD). By adopting fault-tolerant 

architectures for multilevel inverters, the system offers 

enhanced reliability, a crucial feature given the growing 

reliance on green energy. Additionally, the paper incorporates 

a fault management system using Fuzzy Logic, which detects 

and addresses faults to maintain steady inverter functionality. 

Extensive simulations and comparative analyses validate the 

approach, emphasizing its robust voltage control and fault-

resilient capabilities. 

Keywords Heat Exchanger Technologies, Computational 

Thermal Fluid Dynamics, Thermal Management, Predictive  

Modeling, Nanofluid Applications. 

I. INTRODUCTION 

Power converters serve as vital components in contemporary 

electrical systems and microgrids. While traditional control 

techniques, like PI, PID, PD, and PR controllers, are commonly 

employed for managing power converter outputs, they have 

certain limitations. One drawback is their slow dynamic 

response due to design constraints aimed at preventing control 

loop interference. Moreover, these linear controllers are highly 

sensitive to changes in system architecture and unpredictable 

fluctuations in renewable energy generation, resulting in 

potential performance issues and even system failure. To 

overcome these challenges, we propose a predictive control 

methodology based on state-space neural networks. This 

approach aims to enhance system robustness in the face of 

parameter variations and uncertainties in renewable energy 

input[1]–[4]. 

The three-phase inverter is a key device that changes DC power 

into AC energy and has received significant attention in 

academic and industry research. These inverters are crucial for 

a variety of applications, ranging from uninterruptible power 

supplies and energy-storage systems to variable frequency 

drives and decentralized power generation[5]–[9]. To ensure 

high-quality AC output with minimal harmonic distortion, 

inverters often incorporate LC filters. The inverter's 

performance is largely determined by the control methods 

utilized, which need to be versatile enough to accommodate 

load fluctuations, system nonlinearities, and maintain stability 

across diverse operating conditions[10]–[13]. 

 

In the field of power electronics, inverters are essential for converting 

electrical energy forms. They can be categorized into two 

primary types: voltage source inverters (VSIs) and current 

source inverters (CSIs). VSIs operate with a low-impedance 

DC voltage source, while CSIs function with a high-impedance 

DC current source. Both types are critical for various 

applications, yet they each come with their specific control 

challenges that need to be addressed for effective operation. 

 
Figure 1: Three Phase Inverter 

II. LITEATURE REVIEW 

Mohamed et al. [1] propose a novel control scheme for a two-

level converter that combines Model Predictive Control (MPC) 

with feed-forward Artificial Neural Network (ANN) to enhance 

steady-state and dynamic performance for different loads. The 

effectiveness of the ANN-based strategy is validated through 

simulations using MATLAB/Simulink tools and tested on both 

linear and non-linear loads, showing impressive steady-state 

and dynamic performance. 

In their paper, Bakeer et al. [2] propose a model-free control 

strategy that employs artificial neural networks (ANNs) to 

address parameter mismatching in inverter performance. They 

utilize Model Predictive Control (MPC) as an expert and train 

the ANN using data collected from MPC simulations. The study 

focuses on a specific four-level three-cell flying capacitor 

inverter and employs MATLAB/Simulink for simulations. The 

results demonstrate that their approach outperforms 

conventional MPC in handling parameter mismatch and 

reducing total harmonic distortion. Additionally, the 

researchers validate their method through experiments using a 

C2000TM-microcontroller-LaunchPadXL TMS320F28379D 

kit. 

In their work, Wan et al. [3] develop machine learning (ML) 

controllers for Modular Multilevel Converters (MMC) by 

leveraging data from the Model Predictive Control (MPC) 

algorithm. The ML models are trained to mimic the behavior of 
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MPC controllers, which helps in reducing the computational 

load. They explore two types of ML controllers: NN regression 

and NN pattern recognition. Among these, NN regression 

demonstrates superior control performance and requires less 

computational effort compared to the alternative approach[10]–

[16]. 

In their research, Sarali et al. [4] introduce a novel two-stage 

converter scheme that integrates Model Predictive Control 

(MPC) with a feed-forward neural network. This combination 

aims to reduce Total Harmonic Distortion (THD) and improve 

overall performance for different loads[17]–[19]. The MPC 

algorithm generates valuable information used for online 

training of the feed-forward neural network. The proposed 

control strategy is then evaluated through simulations 

conducted in MATLAB/Simulink. 

In their study, Zao et al. [5] focus on stabilizing DC distribution 

buses with dual-active-bridge converters. They address the 

stabilization issue by proposing an active damping solution 

based on model predictive control (MPC). Their approach 

involves including stabilization terms in the cost function to 

enhance control performance. They also use an adaptive 

weighting factor that considers a stray resistor to ensure stable 

load voltage and effective DC-link voltage stabilization. The 

proposed method is validated through simulations and practical 

experiments, demonstrating its effectiveness in achieving 

stability and reliable performance for DC distribution systems. 

In their work, Abbas et al. [6] introduce a neural network-based 

Model Predictive Controller (MPC) designed for a dc-dc buck 

converter operating in Continuous Conduction Mode (CCM). 

The controller is trained using the 'trainlm' method, and its 

performance is compared to that of a classical lead controller. 

Simulation results confirm the effectiveness and validity of the 

proposed neural network-based MPC design for the buck 

converter in CCM. 

In their research, Chen et al. [7] employ a backpropagation 

neural network (BPNN) to fit offline control laws, leading to 

improved performance and reduced storage and computational 

load. The approach allows parallel calculation of control 

parameters, eliminating the need for serial evaluation. 

Experimental results demonstrate that a BPNN with only 49 

parameters can effectively fit over 10,000 offline control laws, 

enabling 1-MHz switching and control frequency with a 4-MHz 

clock frequency. This indicates the efficiency and practicality 

of using BPNN for offline control law approximation. 

In their work, Pho et al. [8] present an innovative approach 

called ANN-MPC for controlling Cascaded H-Bridge (CHB) 

converters. They utilize a multistep MPC controller to generate 

training data for an artificial neural network (ANN). Once 

trained, the neural network can control the CHB system 

independently without the need for MPC. The performance of 

the proposed ANN-MPC controller is compared to 

conventional multistep MPC, and the approach is validated 

through experimentation on a practical system. 

In their research, Sabzevari et al. [9] introduce a state-space 

neural network (ssNN) as a model-free current predictive 

control method for a three-phase power converter. To achieve 

faster convergence, they utilize Particle Swarm Optimization 

(PSO). The proposed ssNN-PSO-predictive controller 

effectively handles parameter variations, leading to enhanced 

robustness compared to conventional finite-control-set MPC. 

Simulation results demonstrate the effectiveness and 

advantages of the ssNN-PSO-predictive controller in 

controlling the three-phase power converter[20]–[25]. 

In their study, Kacimi et al. [10] introduce a novel hybrid 

Maximum Power Point Tracking (MPPT) strategy for 

photovoltaic systems. The method combines artificial neural 

networks with an improved model predictive control approach 

that utilizes a Kalman filter. This hybrid strategy allows for 

efficient tracking of the maximum power point even in rapidly 

changing weather conditions while minimizing overshoot. The 

proposed MPPT outperforms conventional Perturb and 

Observe (P&O), Neural Network with Proportional-Integral 

(NN-PI), and Neural Network Model Predictive Control (NN-

MPC) methods in terms of response time, efficiency, and 

steady-state oscillations, both under stable and variable 

environmental conditions. 

III. PROPOSED METHODOLOGY  

Model Predictive Control (MPC) is an advanced control 

approach that determines control actions by addressing an 

optimization issue at each control interval. This method 

evaluates the system's current condition and anticipates 

upcoming actions across a forecasted period. The suggested 

procedure includes the subsequent phases: 

Design of Model Predictive Control for Multi-Level Inverter 

System Identification: 

 Gather data and parameters of the multi-level inverter. 

 Analyze the dynamic behavior of the system under 

different scenarios. 

Formulation of the Optimization Problem: 

 State the objective of the MPC, e.g., to regulate the output 

voltage of the inverter. 

 Specify constraints of the system such as voltage, current 

limits, and switching frequency limits. 

Modelling the Predictive Controller: 

 Use state-space models or differential equations 

representing the multi-level inverter dynamics. 

 Define a prediction horizon over which future control 

actions and system outputs are predicted. 

Controller Implementation: 

 At each control interval, solve the optimization problem to 

find the optimal control actions. 

 Apply the first control action and reiterate the process. 

THD Reduction using LC Filter 

Total Harmonic Distortion (THD) represents the distortion in a 

waveform due to harmonics. For a multi-level inverter, this is 

particularly significant as the quality of the output waveform 

(typically a voltage) determines the performance of devices 

connected to it. 

Harmonic Analysis: 

 Use FFT (Fast Fourier Transform) or other harmonic 

analysis techniques to analyze the harmonics in the output 

waveform of the inverter. 

LC Filter Design: 

 Choose suitable values for the inductor (L) and capacitor 

(C) based on the predominant harmonics and desired cut-

off frequency. 
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 The LC filter will act as a low-pass filter, allowing the 

fundamental frequency to pass while attenuating higher-

frequency harmonics. 

Integration and Testing: 

 Connect the LC filter to the output of the inverter. 

 Re-analyze the output waveform and calculate the new 

THD to confirm the improvement. 

Fault Tolerant MLI using Fuzzy Logic 

Fault tolerance ensures the system operates correctly even in 

the presence of faults. Fuzzy logic, with its capability to handle 

imprecise data and make decisions, is apt for this. 

Fault Detection: 

 Define possible faults that can occur in a multi-level 

inverter, e.g., short-circuit, over-voltage, etc. 

 Monitor key parameters that indicate these faults. 

Fuzzy Logic Controller Design: 

 Define fuzzy sets for input and output variables. 

 Formulate fuzzy rules based on expert knowledge or 

simulation results to determine the control actions during 

fault conditions. 

 Defuzzify the output of the fuzzy system to obtain a crisp 

value for the control action. 

Sample of fuzzy rules are presented below: 

IF SwitchStatus(S1) IS Failed AND SwitchStatus(S2) IS Failed 

THEN VoltageLevel IS NOT +3VDC 

IF SwitchStatus(S3) IS Failed AND SwitchStatus(S4) IS Failed 

THEN VoltageLevel IS NOT +3VDC 

IF SwitchStatus(S3) IS Working OR AlternateConfiguration IS 

Working THEN VoltageLevel IS 2VDC 

IF SwitchStatus(S5) IS Failed AND SwitchStatus(S6) IS Failed 

THEN VoltageLevel IS +3VDC 

... and so on. 

Fault Handling: 

There are several methods to manage an MLI through the PWM 

strategy. The most prevalent techniques include Sinusoidal 

Pulse Width Modulation (SPWM), space vector modulation 

(SVM), and Selective Harmonic Elimination (SHE-PWM). 

Furthermore, determining the switching angles in SHE can be 

challenging with an increasing number of levels. In this study, 

we employ the Nearest Level Control (NLC) or rounding 

approach. This method boasts of a low switching frequency and 

also minimizes switching losses. The essence of the NLC 

method is to generate a large number of voltage levels by 

equating the amplified voltage reference (K*Vref) to the 

nearest producible voltage level by the converter, as illustrated 

in the provided figure. The gain, denoted as K, can be expressed 

as: 𝐾 = (𝑛 − 1)/2. Here, n signifies the total number of levels. 

Simulation Setup 
Table 1 shows the parameters description with their values 

including resistance, Inductance, Capacitance, DC voltage, 

Frequency, Load type and levels.  

 

 

 

 

Table 1: Parameters Description 

Input Parameters Values 

Resistance 1 ohm 

Inductance 2e-3 H 

Capacitance 1e-3 F 

DC voltage 220 volt 

Frequency 50Hz 

Load Type Resistance 

Levels 7 

 

IV. RESULT ANALYSIS 

Figure 2 presents the voltage prediction efficiency of the model 

after it's trained using ANN. The training model incorporates 

filter current, output voltage, output current, and reference 

voltage as input parameters. Its primary objective is to forecast 

the desired switching state, viewed as the voltage vector for 

inverters. The results of testing seven different switching states 

are showcased. In the subsequent figure, 2, the learning 

accuracy for both linear and non-linear data samples is 

displayed.   

 
Figure 2: Learning Efficiency of Predictive Model 

 
Figure 3: Learning Accuracy of Predictive Model with 

Linear and Non-Linear Load 

Figure 3 and 4 depict the output variable paired with the 

switching variable to produce a 7-level output, as well as the 

output voltage for a 7-level MLI. When contrasted with the 

current approach, the proposed technique yields a more 

accurate sinusoidal output within the time frame of 0-0.2 

seconds. 
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Figure 4: Switching Variable to generate 7 level output 

 
Figure 5: Output voltage generated for 7-level MLI 

 

 
(a) Output Voltage and Current Graph 

 
(a) Current at Switch S1 

 
(b) Current at Switch S2 

Figure 6: Voltage and Current Graph at Fault Occurrence 

at Switch S1 and S2 

In Figure 6, there's a noticeable change in the output voltage 

levels. Specifically, when switches S1 and S2 experience faults, 

the voltage levels drop from seven to five. This demonstrates 

the impact of these switch faults on the overall voltage output. 

 
(a) Output Voltage and Current Graph 

 
(b) Current at Switch S3 

 
(c) Current at Switch S4 

Figure 7: Voltage and Current Graph at Fault Occurrence 

at Switch S3 and S4 

Figure 7 illustrates the output voltage and current waveforms 

resulting from faults in switches S3 and S4. These disruptions 

cause the Multilevel Inverter to function as a five-level inverter 

after the fault. Conversely, Figure 4.7 indicates that even when 

faults arise in bidirectional switches S5 and S6, the Multilevel 

Inverter's output remains consistent at seven levels. 

 
(a) Output Voltage and Current Graph 

 
(b) Current at Switch S5 
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(c) Current at Switch S6 

Figure 8: Voltage and Current Graph at Fault Occurrence 

at Switch S5 and S6 

V. CONCLUSION  

The research has effectively exhibited the merits of integrating 

Model Predictive Control (MPC) with a three-phase voltage-

source inverter, emphasizing its role in output voltage 

regulation. The inclusion of the LC filter has unequivocally 

proven beneficial in mitigating THD, enhancing the quality of 

the output voltage waveform. Through fault-tolerant multilevel 

inverter topologies, the study underscores the necessity for 

uninterrupted power supply systems, especially in renewable 

energy setups. The Fuzzy Logic-based system has also 

demonstrated significant potential in identifying and 

counteracting faults, ensuring a steadfast performance of the 

inverter. The simulation results affirm the robustness of the 

proposed methodology. When pitted against existing models, 

the proposed system exhibits superior voltage output, 

especially between 0-0.2 seconds, and maintains its efficiency 

even when faced with faults in its bidirectional switches. This 

study underscores the potential of leveraging modern control 

strategies and fault-tolerant topologies in building efficient and 

resilient power electronic systems. The exploration of Model 

Predictive Control (MPC) combined with neural networks for 

multilevel inverters, as presented in this study, opens a myriad 

of opportunities for further research. Future endeavors can 

focus on enhancing the real-time execution speed of the 

combined MPC-ANN model, expanding its applicability to 

other power electronic configurations, and incorporating 

additional fault diagnosis techniques. Moreover, the integration 

of more advanced machine learning algorithms might lead to 

even better prediction and control accuracy. The adaptability of 

the proposed approach to emerging power electronic 

applications, particularly in renewable energy domains such as 

solar and wind energy systems, can also be a promising avenue 

for future research. 
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